
Excerpts from the book:

Eloquent JavaScript - A Modern Introduction to Programming by Marijn Haverbeke

 

A function can have multiple parameters or no parameters at all. In the following example, makeNoise

does not list any parameter names, whereas power  lists two:

var makeNoise = function() {
    console.log("Pling!");
}

makeNoise () ;
// ! Pling!

var power = function(base, exponent) {
    var result = 1;
    
    for(var count=0; count<exponent; count++)
        result *= base ;
    
    return result ;
}

console.log(power(2, 10));
// ! 1024

The parameters to a function behave like regular variables, but their initial values are given by the caller of
the function, not the code in the function itself. An important property of functions is that the variables
created inside of them, including their parameters, are local to the function. This means, for example, that
the result variable in the power  example will be newly created every time the function is called, and
these separate incarnations do not interfere with each other.

This “localness” of variables applies only to the parameters and to variables declared with the var keyword
inside the function body. Variables declared outside of any function are called global, because they are
visible throughout the program. It is possible to access such variables from inside a function, as long as you
haven’t declared a local variable with the same name.

CS171 - Reading - Lab 6

Functions, parameters and scopes



The following code demonstrates this. It defines and calls two functions that both assign a value to the
variable x . The first one declares the variable as local and thus changes only the local variable. The
second does not declare x  locally, so references to x inside of it refer to the global variable x  defined
at the top of the example.

var x = "outside";

var f1 = function() {
    var x = "inside f1";
};

f1();
console.log(x);
// ! outside

var f2 = function() {
    x = "inside f2";
};

f2();
console.log(x);
// ! inside f2

This behavior helps prevent accidental interference between functions. If all variables were shared by the
whole program, it’d take a lot of effort to make sure no name is ever used for two different purposes. And if
you did reuse a variable name, you might see strange effects from unrelated code messing with the value
of your variable. By treating function-local variables as existing only within the function, the language makes
it possible to read and understand functions as small universes, without having to worry about all the code
at once.

   

This story, like most programming stories, starts with the problem of complexity. One philosophy is that
complexity can be made manageable by separating it into small compartments that are isolated from each
other. These compartments have ended up with the name objects. An object is a hard shell that hides the
gooey complexity inside it and instead offers us a few knobs and connectors (such as methods) that
present an interface through which the object is to be used. The idea is that the interface is relatively simple
and all the complex things going on inside the object can be ignored when working with it.

As an example, you can imagine an object that provides an interface to an area on your screen. It provides
a way to draw shapes or text onto this area but hides all the details of how these shapes are converted to
the actual pixels that make up the screen. You’d have a set of methods —for example, drawCircle  —

Objects as a programming construct



and those are the only things you need to know in order to use such an object.

 

Methods are simply properties that hold function values. This is a simple method:

var rabbit = {};
    rabbit.speak = function (line) {
    console.log("The rabbit says '" + line + " '");
};
rabbit.speak ("I'm alive.");
// ! The rabbit says "I'm alive."

Usually a method needs to do something with the object it was called on. When a function is called as a
method — looked up as a property and immediately called, as in object.method()  — the special
variable this  in its body will point to the object that it was called on.

function speak(line) {
    console.log("The " + this.type + " rabbit says '" + line + " '");
}

var whiteRabbit = { type: "white", speak: speak };
var fatRabbit = { type: "fat", speak: speak };

whiteRabbit.speak("Oh my ears and whiskers, " +
" how late it's getting!");
// ! The white rabbit says "Oh my ears and whiskers, how late it's getting!"

fatRabbit.speak("I could sure use a carrot right now.");
// ! The fat rabbit says "I could sure use a carrot right now."

 

The keyword this

In JavaScript, as in most object-oriented programming languages, this  is a special keyword that is
used within methods to refer to the object on which a method is being invoked. The value of this is
determined using a simple series of steps:

1. If the function is invoked using Function.call or Function.apply, this will be set to the first
argument passed to call/apply. If the first argument passed to call/apply is null or undefined,
this  will refer to the global object (which is the window  object in Web browsers).

Methods



2. If the function being invoked was created using Function.bind, this  will be the first argument
that was passed to bind at the time the function was created.

3. If the function is being invoked as a method of an object, this  will refer to that object

4. Otherwise, the function is being invoked as a standalone function not attached to any
object, and this  will refer to the global object.

Source: JavaScript Basics by Rebecca Murphey

 

Watch closely:

var empty = {};

console.log(empty.toString);
// ! function toString ()...{}

console.log(empty.toString());
// ! [ object Object ]

I just pulled a property out of an empty object. Magic! Well, not really. I have simply been withholding
information about the way JavaScript objects work. In addition to their set of properties, almost all objects
also have a prototype. A prototype is another object that is used as a fallback source of properties. When
an object gets a request for a property that it does not have, its prototype will be searched for the property,
then the prototype’s prototype, and so on.

So who is the prototype of that empty object? It is the great ancestral prototype, the entity behind almost all
objects, Object.prototype.

The prototype relations of JavaScript objects form a tree-shaped structure, and at the root of this structure
sits Object.prototype. It provides a few methods that show up in all objects, such as toString, which
converts an object to a string representation.

 

In JavaScript, calling a function with the new keyword in front of it causes it to be treated as a constructor.
The constructor will have its this variable bound to a fresh object, and unless it explicitly returns another
object value, this new object will be returned from the call.

Prototypes

Constructors



An object created with new  is said to be an instance of its constructor.

Here is a simple constructor for rabbits. It is a convention to capitalize the names of constructors so that
they are easily distinguished from other functions.

function Rabbit(type) {
    this.type = type ;
}

var killerRabbit = new Rabbit("killer");
var blackRabbit = new Rabbit("black");

console.log(blackRabbit.type);
// ! black

Constructors (in fact, all functions) automatically get a property named prototype , which by default
holds a plain, empty object that derives from Object.prototype. Every instance created with this constructor
will have this object as its prototype. So to add a speak  method to rabbits created with the Rabbit

constructor, we can simply do this:

Rabbit.prototype.speak = function(line) {
    console.log('The ' + this.type + ' rabbit says "' + line + '"') ;
};

blackRabbit.speak("Doom ...");
// ! The black rabbit says "Doom ..."


